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SUMMARY 

In this paper a fully explicit finite element method (FEFEM) is presented for solving steady incompressible 
viscous flow problems. This full explicitness is achieved by combining the multiplier (or augmented 
Lagrangian) method with a pseudo-time-iteration method. FEFEM needs no global matrix at all and is of 
great advantage to large-scale problems because they can be solved within the limit of core memory. 

The optimum choice of a time increment and a penalty parameter is discussed and the driven cavity flow at 
a Reynolds number of 1000 is computed with a refined mesh (60 x 60 elements). 
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INTRODUCTION 

In recent years the finite element method (FEM) has been increasingly used for solving 
incompressible viscous flow problems. Nevertheless, applications of FEM to large-scale problems 
are very rare. This originates mainly in two reasons: one is the insufficient memory and calculating 
speed of computers, and the other-this is important-is a lack of formulations suitable for large- 
scale problems. 

A well-known method which is applicable to large-scale problems is the fractional step 
method.’-4 It has an efficient implicit pressure/explicit velocity algorithm and is suitable for 
transient calculations. However, it needs too much computation (CPU plus I/O) time to get a 
steady solution, because the Poisson equation for the pressure must be solved at each iterative 
stage. Therefore, it can be said that even the fractional step method is ineffective for solving large- 
scale steady problems. 

In this paper a fully explicit finite element method (FEFEM) is presented for solving steady 
incompressible viscous flow problems. This full explicitness is achieved by combining the 
multiplier (or augmented Lagrangian) method with a pseudo-time-iteration method. The 
multiplier method is very suitable for solving steady incompressible viscous flow problems and 
many algorithms by this method have been already presented.’-’ However, they are not fully 
explicit and need a global matrix. On the other hand, FEFEM is really fully explicit and needs, of 
course, no global matrix at all. This is of great advantage to large-scale problems because they can 
be solved within the limit of core memory. 

In the next section the governing equations and the boundary conditions are presented. Then the 
multiplier method is briefly reviewed and the algorithm of FEFEM is presented. Next the 
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discretization by the Galerkin method is presented and an approximate integration technique is 
introduced to save CPU time. Then the optimum choice of a time increment and a penalty 
parameter is discussed, and in the last section the driven cavity flow at a Reynolds number of 1000 
is computed with a refined mesh (60 x 60 elements). 

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The steady Navier-Stokes equations and the continuity equation are 

p(u*V)u = - v p  + K + - V(V.U) + pv2u (1) 

(2) 
( :> 

v * u  = 0 

where u is the velocity vector, p the pressure, p the density, p the shear viscosity and IC the bulk 
viscosity, and the other mathematical symbols are used in the standard manner. The second term of 
the right-hand side of equation (l), which is usually omitted because of equation (2), plays a very 
important role in the multiplier method. 

In the case of Stokes flows, equation (1) is reduced to 

v p  - qV(V.u) - pv2u = 0 (3) 
where 

q = lc + f ( 2 f) (4) 

As for equation (3), the variational integral exists and is expressed as follows: 

J(u,P) = ( - $ ~ V U : ( V U ) ~  - PV*U + -$~(V*U)’} dS2 (5 )  f* 
where S2 is a domain of the flow field. 

of equation (51, and they are expressed as follows: 
The essential and the natural boundary conditions are obtained by calculating the first variation 

u=a,  on r, 
( - p + + V - u ) n + p - = b ,  on T2 

where a and b are given boundary data, n is the unit vector outward normal to the boundary and 
a/& is the outward normal derivative to the boundary. rl and Tz are subsets of whole boundary r 
and satisfy the following conditions: 

(6) 
au 
an 

r Iur2=r  (7) 
rinr2=@ 

MULTIPLIER METHOD 

When a functional inf(u)dR and a function h(u) are given, the problem 

Find u such that f(u)dQ is minimized subject to h(u) = 0 (8) J* 
is a constrained minimization problem. In the multiplier method, in order to transform this 



STEADY NAVIER-STOKES EQUATIONS 283 

constrained problem into a sequence of unconstrained problems, the augmented Lagrangian (9) i s  
introduced: * 

th(u) dR + 7 (h(~)} '  dR "I (9) 

where 
4 is a Lagrange multiplier 
CJ is a positive penalty parameter 

0. Give an arbitrary to and set m = 0. 
1. Find u"+l such that: 

By using the augmented Lagrangian (9), the algorithm of the multiplier method is given as follows:8 

6L(U"+ l, gm) = 0 

2. If h(u"+') = 0 then stop. 
3. Calculate g m + l  by 

g m + l =  5" - oh(u"f') 

4. Set m = m +  1 and go to 1. 
Now, substituting $ ~ V U : ( V U ) ~ ,  V-u, p and q for f(u), h(u), 5 and c, respectively, it is found that 

L(u, 5) amounts to J(u, p). Consequently, the multiplier method is directly applicable to the Stokes 
flow problems. The algorithm is given as follows: 

0. Give an arbitrary po and set m = 0. 
1. Find urn+' such that: 

SJ(u"f1,p") = 0 (10) 

2. If V-u"+ = 0 then stop. 
3. Calculate p m f l  by 

(1 1) pm+ 1 = p m  - q v . u m +  1 

4. Set m = m +  1 and go to 1. 
For the Navier-Stokes equations (1) it is known that there exists no variational integral 

corresponding to J(u, P ) . ~  The multiplier method, however, is also applicable to this case by 
regarding 6J as not the first variation but the weighted residual integral, i.e. by replacing 
equation (10) with 

~ Q ( p ( ~ m + l * V ) ~ m + l  +Vpm-qV(V*um+1)-pV2um+1).Wdl(Z=0 (12) 

where W is a weighting function which vanishes on r1.536 
As was said in the introduction, the aim of this paper is to construct a scheme which needs no 

global matrix at all. However, it is impossible to obtain urn+' from equation (12) without solving 
the simultaneous  equation^.^,^ To get rid of this contradiction the time derivative term p(au/at) is 
added to the left-hand side of equation (1) and it is approximated by forward finite difference. 
Considering the iteration number m to be the time step number, the following equation is obtained 

+ p(urn*V)um + Vp" - qV(V.u") - ,uV~U" 

where At is a time increment. From equation (13) urn+' is obtained without solving the simultaneous 
equations by using the lumped mass matrix. Consequently, the algorithm comes to the final form: 
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0. 
1. 
2. 
3. 
4. 

Give arbitrary uo and P O ,  and set m = 0. 
Find urn+ by solving equation (1 3). 
If V.umfl  = 0 then stop. 
Calculate pm + ' by equation (1 1). 
Set m = m +  1 and go to 1. 

It should be noticed that the time derivative term is introduced only to obtain the steady solution 
(a kind of pseudo-time-iteration method), i.e. the converged solution is meaningful as the steady 
solution but the solutions at each time step are meaningless as the non-steady solutions. 

DISCRETIZATIONS 

In this section two-dimensional cases are treated. The four-node isoparametric elements are used, 
in which the velocity is interpolated by bilinear basis functions N i  and the pressure is piecewise 
constant. 

In the following discussions, it is supposed that all the variables are suitably non- 
dimensionalized and that (u, u) denote the velocity components in an orthogonal Cartesian co- 
ordinate system (x, y). 

The non-dimensional form of the pressure correction equation (1 1)  is expressed as 

where R is the Reynolds number and a is a non-dimensional penalty parameter defined by 

a=-  - 
P 

As the pressure is piecewise constant, the weighted residual integral of equation (14) is expressed 
as 

a 
p r + I  = p r - - R D y '  (16) 

where index e denotes an element number. 

incompressibility constraint corresponding to p ,  is given by 
Equation (16) shows that pe of each element plays the role of the Lagrange multiplier and the 

D , = O  (18) 
Equation (18) represents the mass conservation of an element e. This means that the discrete 

divergence of the velocity has the same number of degrees of freedom as the discrete pressure, i.e. 
one per element. The Navier-Stokes equations must be discretized in consideration of this fact. 

Applying the Galerkin method to equation (13), the following equation is obtained for u (nearly 
the same equation is obtained for 0): 

Ni(um*V)um dR + J Nib, dT 
r 

(19) 

where b, is the x-component of the boundary condition (6)2. 
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The first term of the right-hand side of equation (19) must be replaced with 

because of the above discussion. This is the consistent treatment of the penalty term.loO'" 
The left-hand side of equation (19) yields the mass matrix. As was said in the previous section, the 

full explicitness of the algorithm is achieved by replacing the consistent mass matrix with the 
lumped one which is obtained by row-sum at element level. This approximation has no influence 
on the steady solution because the time derivative term vanishes at convergence. 

In order to compute the numerical examples of this paper the following approximations are 
made to the diffusion (second) and the convection (third) terms of the right-hand side of 
equation (19): 

1. 

2. 

where 

These approximations, which have nothing to do with the present method, are very useful1 to save 
CPU time, because the right-hand sides of equations (21) and (22) can be calculated without using 
any numerical integration technique (see the Appendix). Of course there is a fear that these 
approximations may lower the accuracy of solutions, but the accuracy of solutions depends not 
only on the accuracy of integration but also on the mesh pattern and the size ofindividual elements. 
Generally speaking, if we want a highly accurate solution, we need the more CPU time. In practice 
we therefore should take the computation time into consideration and come to an understanding 
on fair terms. Some researchers employ the one-point Gaussian quadrature to minimize 
computation time.3' ' 

As for interpolations it is well known that the bilinear velocity and the piecewise constant 
pressure can exhibit a singular 'chequerboard' mode of the pressure field under certain types of 
boundary  condition^,'^ and extensive researches have recently been done to study the relation 
between the incompressibility constraint and the pressure However, it should be noted 
that for virtually all practical problems the chequerboard mode is either absent or can be filtered 
out by suitable smoothing Therefore, it would be unnecessary to extend the 
method to more costly and complicated higher-order elements. 

STABILITY CONDITIONS 

It is generally said that the explicit method is conditionally stable and the time increment At has to 
satisfy the following  condition^:'^ 

0 < At < Ato (24) 
where Ato is the limiting value of At and is seen to be governed by various factors such as the 
Reynolds number, mesh size and, in this case, the penalty parameter a. 

The Navier-Stokes equations are a generalization of the simpler convection-diffusion equation 
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and, in one-dimensional cases, they are reduced to 

U m + l  durn 1 a Z U m  
= - u m - + - - ( a +  1)- 

At dx R a x 2  

where the pressure term is omitted. 
There are two important parameters which govern the stability of equation (25), namely, 

a t 1  At 
d r p -  : Diffusion number 

R (Ah)2 

C =  Courant number 
Ah 

where Ah is a mesh size and lumlmax is the maximum absolute value of urn. 
The stability conditions of equation (25)  depend on how one spatially discretizes equation (25). 

For example, in case of the centred-space finite differences on a regular grid, the stability conditions 
are given byt9 

d < i  and c2<2d  
i.e. 

2(a + 1) and At,<---- 
R I urn I i a x  

R(Ah)2 
At<- 

2(ci + 1) 

The conditions (28) are illustrated in Figure 1 together with (4). 
In the case of FEM, and that in case of two or three-dimensional equations, the stability 

conditions must be different from (28), but yet they can be expected to be given by inequalities 
similar to (28). In order to verify it numerically, let us consider the step flow as a test example. The 
finite element mesh and the boundary conditions are shown in Figure 2.  The Reynolds number is 
50, which is based on the inlet width and the maximum velocity there. 

The limiting values of time increment At against each penalty parameter a are plotted in 
Figure 3, and the stability conditions of this example are given approximately by 

c2=2d 

01 

Figure 1 .  Neutral stability curve for one-dimensional centred-space finite difference equation 
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Figure 2. Finite element mesh and boundary conditions for step flow 

Figure 3. Stability conditions for step flow from numerical experiments 

where Ah = 0.25, R = 500 and 1 = 1.0. It is found that the conditions (30) are very similar to 
(28). The computed velocity vectors and pressure contours are shown in Figure 4. It is needless to 
say that these computed results do not depend on those parameters. 

The next problem is to find the optimum parameters At and c1 which maximize the convergence 
rate. This is, however, very difficult and maybe there is no rational way to estimate such optimum 
values a priori. They therefore should be determined by a numerical experiment. As an example the 
experimental results corresponding to the data in Figure 3 are shown in Figure 5, where the 
ordinate is the time step at which V-u becomes less than 0.001. From this Figure it is found that the 
optimum value of c1 for this example is between 4 and 5 and that the convergence rate becomes 
much worse as c1 becomes smaller than the optimum value. 
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Figure 5. Convergence rate for step flow from numerical experiments 
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Figure 6. Finite element mesh and boundary conditions for driven cavity flow 

NUMERICAL EXAMPLE 

Driven cavity flow 

The finite element mesh and the boundary conditions are shown in Figure 6. The computing 
conditions are as follows: R = 1000; At = 0-009; a = 2.7; V-u < (stopping condition). The 
computation was performed in single precision (32 bits per word) on the NKK Technical Research 
Center IBM 308ID computer. The used memory size was only 460K bytes, the iteration number 
was 16,241 and CPU time was 85.64min. 

The computed velocity vectors, pressure contours, streamlines and vorticity contours are shown 
in Figure 7. The profiles of the horizontal velocity along the vertical centre line of the cavity 
(x = 0.5) and the vertical velocity along the horizontal centre line of the cavity ( y  = 0.5) are illus- 
trated in Figure 8. They show almost exact agreement with those of Ghia et al. (uniform grid; 
129 x 129).20 

CONCLUSIONS 

The fully explicit algorithm for solving the steady incompressible Navier-Stokes equations has 
been presented. This full explicitness was achieved by combining the multiplier method with the 
pseudo-time-iteration method. The present method really needs no global matrix at all and will 
open the way to large-scale, three-dimensional problems. 

The choice of the optimum parameters is a problem left for the future. 
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Figure 8. Velocity profiles along horizontal and vertical centre lines 

1 

Figure 9. Typical four-node isoparametric element 

APPENDIX: SOME INTEGRAL FORMULAE (SEE FIGURE 9) 

= 3 ( ( x 3  - x 1 ) ( Y 4 - y 2 ) - ( Y 3  -Y1)(x4-xZ))  



AKIRA MIZUKAMI 292 

3. 
B C  B C  

JQe N ,  dQ = a( A - + ?), 6, N ,  dQ = : ( A  - - -?) 

where (nx, ny) are (x,  y )  components of the unit vector outward normal to the element boundary re, 
and A,  B and C are given by 

A = ( x 3  - X A ( Y 4  - Y 2 )  - (Y3  - Y&4 - xz) 

c = (x2 - X&Y4 - Y 3 )  - (Yz  - Y A X 4  - x3) 

ZE (x3 - x2)(Y4 - Y l )  - (Y3 - Y2)(x4 - 
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